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Summary

1. Estimating temporal trends in animal abundance is central to ecology and conservation, but

obtaining useful trend estimates is challenging when animal detection rates vary across surveys (e.g.

because of differences in observers or conditions). Methods exist for obtaining abundance estimates

using capture–recapture and distance sampling protocols, but only recently have some of these been

extended to allow direct estimation of abundance trends when detection rates vary. Extensions to

distance sampling for>2 surveys have not yet been demonstrated.

2. We demonstrate a Bayesian approach for estimating abundance and population trends, using a

time series of line-transect data for endangered fin whales Balaenoptera physalus off the west coast

of the United States.We use a hierarchical model to partition state and observation processes. Pop-

ulation density is modelled as a function of covariates and random process terms, while observed

counts are modelled as an overdispersed Poisson process with rates estimated as a function of popu-

lation density and detection probability, which is modelled using distance sampling theory.We used

Deviance Information Criteria to make multi-model inference about abundance and trend

estimates.

3. Bayesian posterior distributions for trend parameters provide strong evidence of increasing fin

whale abundance in the California Current study area from 1991 to 2008, while individual abun-

dance estimates during survey years were considerably more precise than previously reported esti-

mates using the same data. Assuming no change in underlying population dynamics, we predict

continued increases in fin whale numbers over the next decade. Our abundance projections account

for both sampling error in parameter estimates and process variance in annual abundance about

the mean trend.

4. Synthesis and applications. Bayesian hierarchical modelling offers numerous benefits for analy-

sing animal abundance trends. In our case, these included its implicit handling of sampling covari-

ance, flexibility to accommodate random effects and covariates, ability to compare trend models of

different functional forms and ability to partition sampling and process error to make predictions.

Ultimately, by placing distance sampling within a more general hierarchical framework, we

obtainedmore precise abundance estimates and an inference about finwhale trends that would have

otherwise been difficult.

Key-words: Balaenoptera physalus, cetacean density, distance sampling, hierarchical model-

ling, multi-model inference

Introduction

Understanding temporal trends in wildlife population abun-

dance is a cornerstone of ecological research, population risk

assessment and natural resource management (Krebs 2001;

Morris & Doak 2002; Williams, Nichols & Conroy 2002;

Rodrigues et al. 2006). Obtaining useful estimates of abun-

dance, let alone abundance trends, from field surveys is not

straightforward for many populations because of imperfect

and heterogeneous detection of individuals within and, more

importantly, among surveys (Kéry & Schmidt 2008; Kéry

et al. 2009; Kéry & Royle 2010). An entire research field has*Correspondence author. E-mail: jeff.e.moore@noaa.gov
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guided survey design and statistical methodology to improve

abundance estimation when only a fraction of the popula-

tion is counted during surveys. Most methods can be

classified broadly into capture–recapture (Borchers, Buck-

land & Zucchini 2002; Amstrup, McDonald & Manly 2005)

and distance sampling protocols (Buckland et al. 2001,

2004). In this study, we focus on the latter, which uses

frequency distributions of detection distances to obtain unbi-

ased animal density and abundance estimates. Thomas,

Burnham & Buckland (2004) provide the only guidance we

know of for estimating abundance trends from >2 distance-

based abundance estimates with proper accounting of sam-

pling covariance, but their approach is somewhat post hoc in

that trends are fit to time series of abundance estimates

obtained individually via distance methodology, rather than

estimating both trends and abundance estimates directly

within a single framework.

Here, we describe a hierarchical Bayesian approach that

allows for estimation of and statistical inference on trend

parameters, time- and strata-specific density and abundance,

covariate effects on detectability and process and sampling

error components within a single framework. Effectively, we

combine a generalized linear model for animal density with

a line-transect model of detectability. Hierarchical state-

space models allow data to be formally represented as the

outcome of distinct stochastic processes: a state process that

describes the underlying ecological dynamics of interest and

an observation process that describes the relationship

between the unobserved ecological state variable and the

observed data (de Valpine & Hastings 2002; Clark 2007;

Royle & Dorazio 2008). In the current context, the state

model represents change in true population density or

abundance through time (Nt), while the observation model

characterizes the probability of observing nt individuals dur-

ing surveys (the data) given Nt and the detection probability

process specific to the distance sampling (line-transect)

survey design.

There are conceptual and computational advantages of

formulating ecological problems hierarchically (Royle &

Dorazio 2008; Cressie et al. 2009). Conceptually, isolating

the biological (state) process from the ‘nuisance’ (observa-

tion) process provides an explicit, mechanistic and ulti-

mately more interpretable description of how the data were

generated. An important practical benefit is that the biologi-

cal model may be used to make predictions about future

values of the state variable without requiring information

about future values of the observation process; we will pro-

vide an example of this utility in our case study. Computa-

tionally, hierarchical models are ideal for partitioning

sources of variance (e.g. process vs. sampling error) and

handling random effect variables, and they are well suited

to analysis by Bayesian methods (Cressie et al. 2009; Cong-

don 2010; Link & Barker 2010). Bayesian methods enable

probabilistic inference about parameters and trends based

on summaries of posterior probability distributions (vs. null

hypothesis testing), they permit the use of multiple data

types collected at different scales and use of prior informa-

tion, and they enable model selection and multi-model

inference in a straightforward manner. We demonstrate

application of a hierarchical Bayesian trend model by

assessing fin whale Balaenoptera physalus L. abundance

trends in the California Current from 1991 to 2008 from

multiple years of line-transect survey data. We proceed to

use the fitted trend model to make predictions of fin whale

abundance 8 years into the future, which has relevance for

estimating incidental take limits under the US Marine

Mammal Protection Act in the absences of concurrent

abundance estimates (NMFS 2005).

Cetacean abundance surveys in the California
Current

Cetacean abundance surveys in the California Current eco-

system, based on distance sampling design, have been con-

ducted every few years by the NOAA Southwest Fisheries

Science Center (SWFSC) since 1991. Year-specific abun-

dance estimates for many cetacean species along the US west

coast have been recently published based on these surveys

(Barlow & Forney 2007; Barlow 2010). Ideally, these abun-

dance estimates should be useful for determining whether

cetacean populations have increased, decreased or remained

constant over the 17-year survey period. Beyond the obvious

value of such information for studying marine ecosystem

dynamics and impacts of humans thereon, trend estimates

are necessary for guiding decision-making under several legal

policies affecting marine mammals (US Marine Mammal

Protection Act, Endangered Species Act and International

Convention for the Regulation of Whaling). Inferences

about cetacean abundance trends are elusive, however,

because of high levels of sampling error in individual abun-

dance estimates [e.g. large coefficients of variation (CVs)]

that make trends difficult to detect given the limited abun-

dance data available and a statistical paradigm of null

hypothesis testing (Taylor et al. 2007). Moreover, sampling

covariance in abundance estimates because of pooling of

data across years to estimate species-detection functions can

invalidate statistical inference from conventional trend analy-

ses by underestimating standard errors of model parameters.

For purposes of illustration, we limit application of our

Bayesian trend analysis to distance sampling data for fin

whales, which are listed as Endangered under the US Endan-

gered Species Act. We chose this species for initial study

because of its conservation status, because fin whale counts are

higher than for most other cetaceans in the California Current

(i.e. relatively large sample size), and because their relatively

high detectability and small group sizes allow for simple covar-

iate models of detection and relatively precise estimates of

abundance compared to most other species. Additionally, fin

whale abundance point estimates since 1991 give the strongest

impression out of all species of a probable trend (increasing)

(Barlow & Forney 2007). Therefore, we considered this species

a good test case because if trends are not statistically detectable

for this species, they are unlikely to be detected for other

species in this system.
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Materials and methods

SURVEY METHODS AND DATA

We provide here a brief overview of surveymethodology. For details,

see Kinzey, Olson & Gerrodette (2000) and Barlow & Forney (2007).

Shipboard line-transect surveys were conducted in summer and

autumn of 1991, 1993, 1996, 2001, 2005 and 2008. The study area has

been consistently divided into four strata, from north to south

(Fig. 1): Oregon–Washington (OW),NorthernCalifornia (NC), Cen-

tral California (CC) and Southern California (SC). All strata were

surveyed in all years, except that Oregon-Washington was not sur-

veyed in 1991 or 1993. Transects followed a uniform grid pattern

anchored to a different random starting point each survey year. Ves-

sels travelled at 9–10 knots along transects. Observers used 25· binoc-

ulars to sight cetacean groups. Detection distances and angles to

sighted cetacean groups were converted into perpendicular distances

to the transect lines. Whale group sizes were estimated as the average

of observers’ individual estimates (typically three estimates per

group). In previously published analyses that included data from all

surveyed species, group size estimates were adjusted for unique

observer effects (Gerrodette & Forcada 2005; Barlow & Forney 2007;

Barlow 2010). However, those calibrations were designed to improve

group size estimation of dolphins; they may not be appropriate for

large whales. Therefore, no group size adjustments were performed in

the current finwhale analysis.

Only detections and effort occurring during sea state conditions of

Beaufort 5 or better were included in the analysis. For estimating the

parameters that describe the decline in detectability with distance

from the transect line, we used pooled data from three species: fin

whales, blue whales Balaenoptera musculus and killer whales Orcinus

orca. The latter two species have very similar detection characteristics

to fin whales (Barlow, Gerrodette & Forcada 2001), so their inclusion

increased sample size (Barlow & Forney 2007). Distance data were

truncated to only include observations<4 km from the transect line;

this truncation distance is consistent with previous analyses (e.g. Bar-

low&Forney 2007) and eliminated close to 15%ofobservations, con-

sistent with recommendations by Buckland et al. (2001). Total survey

effort (on-effort transect length), counts of fin whale groups and

recorded groups sizes by year and stratum are summarized inTable 1.

Many covariates associated with each detected cetacean group are

recorded during surveys. Based on previous covariate model selection

for fin whale detectability (Barlow & Forney 2007), we only consid-

ered a few detectability covariates in this analysis: ship (surveys

occurred on the David Starr Jordan, McArthur, and McArthur II),

strata, rainFog (binary variable, coded as 1 if rainy or foggy) and year.

All variables were modelled as fixed effects except for year, which was

modelled as a random effect (see below); this variable was not evalu-

ated in previous analyses.

ANALYTICAL METHODS

Following Buckland et al. (2001), N̂jt ¼ D̂jtAjt, where Njt is popula-

tion abundance,Djt is population density, and Ajt is the study area of

stratum j during year t. Density may be estimated:

D̂jt ¼
njt �ŝjt � f̂jtð0Þ
2�Ljt �ĉ

; eqn 1

where njt is number of groups detected; sjt is mean group size;

fjt(0) is the evaluation at distance y = 0 of the probability density

function (pdf) for detection probability; c is the detection proba-

bility on the transect line if not assumed to be 1; and Ljt is the

on-effort transect length. We assume c does not vary with j or t.

Process model

To formulate the problem hierarchically, we partition the model into

process and observation components. The process model describes

how population density changes through time. The most general

model we considered describes variation in density as a function of

mean stratum differences (fixed intercepts), stratum-specific trend

coefficients (random slopes) and a stochastic component (random

variable) for each stratum-year (j,t). If the population is changing

exponentially, the full densitymodel is:

Djt ¼ exp bd 0 þ bdkðstratakÞ þ bd4;jtþ cjt
� �

;

bd4; j � NormðbD4; rD4Þ;

cjt � Normalð0; rdÞ;

where subscripts d and D denote density parameters and hyper-

parameters; bd 0 is an intercept for density; bdk for k = 1, 2, 3, are

fixed effects for binary dummy variables for strata SC, CC and NC,
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Fig. 1. Study area, geographic strata, fin whale sighting locations and

transects surveyed.
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respectively; and bd4,j is the stratum-specific trend coefficient, treated

as a random variable from a normal hyper-distribution with hyper-

parameters bD4 and rD4.We modelled trends as random effects rather

than fixed effects under the assumption that population changes

across strata are not fully independent, such that trend data from one

region provide information about trends in all regions. This enables

more efficient use of the data for estimating trend parameters, because

all data are used to estimate the hyper-parameters and fewer parame-

ters are required to generate stratum-specific trend estimates. cjt is a
random effect with mean zero and variance r2

d that describes process

variation in year-to-year density.

We also considered an equally general model in which the absolute

rate of change in population density is decelerating (e.g. because of

density dependence):

Djt ¼ exp bd 0 þ bdkðstratakÞ þ bd4; j logðtÞ þ cjt
� �

:

Finally, we considered reduced models, such as all strata sharing

the same intercept and ⁄ or slope coefficients, or exhibiting no growth

trend (i.e. intercept-only models).

Observation model

The observation model links the state process to the observed data.

Rearranging eqn 1 and treating the observed counts as a Poisson ran-

dom variable:

njt � PoisðE½njt�Þ;

E½njt� ¼
2�Ljt �c
sjt �fjtð0Þ

�Djt:

Poisson overdispersion is handled implicitly by including process

error and overdispersion terms in other model components. The sur-

vey lengths Ljt were considered to be measured without error

(Table 1). Trackline detectability ĉ has been measured empirically for

fin whales (Barlow & Forney 2007); it has an estimated mean of 0Æ92

with standard error of 0Æ02. We discuss parameters fjt(0) and sjt in

more detail.

Parameter f(0). For data truncated at distance w (4 km), the detec-

tion pdf is (Buckland et al. 2001):

fjtðyÞ ¼
gjtðyÞRw

0

gjtðyÞdy
;

where gjt (y) is the detection function, and gjt (0) is 1, so that

fjtð0Þ ¼
1Rw

0

gjtðyÞdy
:

Basedon previous analyses in our case study system (Barlow&For-

ney 2007), we assume a half-normal detection function for gjt (y):

gjtðyÞ ¼ exp
�y2
2r2

h

� �
;

where h denotes half-normal parameters. We estimated rh and hence

fjt (0) separately for each observation i as a function of detection-spe-

cific covariates (see Marques & Buckland (2004), for theoretical

development of covariate use in the detection function). The most

general covariate models we consideredwere:

rh;i ¼ exp½bh0 þ bh1ðrainFogiÞ þ bhkðstratak;iÞ þ gt;i�; and

rh;i ¼ exp½bh0 þ bh1ðrainFogiÞ þ bhkðstratak;iÞ þ bhkðshipk;iÞ�;

where bh0 is the intercept; bh1 is the coefficient for rainFog; bhk for

k = 2, 3 4, are fixed effect coefficients for binary stratum variables

SC, CC and NC, respectively; bhk for k = 5, 6 are fixed effect coeffi-

cients for binary ship variables David Starr Jordan and McArthur;

and gt,i is a random effect for year t: gt � Normal(0, rr). Year and

ship variables were not included in the samemodels because theywere

largely confounded (data in a particular year were sometimes all from

the same vessel). Reduced models included subsets of these variables

but always included rainFog, based on model selection results of

Table 1. Number of fin whale groups

detected (njt), km of survey effort (Ljt) and

mean observed fin whale group size (sjt) in

each year of cetacean line-transect surveys,

by study stratum. Only whale groups<4 km

from the transect line and only survey effort

during Beaufort sea state £5 are included

Stratum

Year

1991 1993 1996 2001 2005 2008

Oregon and Washington

njt No data No data 8 10 11 17

Ljt 4337 3098 2951 3237

sjt 1Æ4 1Æ2 1Æ4 2Æ5

Northern California

njt 2 6 4 13 29 13

Ljt 3018 2085 3287 2376 2665 2396

sjt 1Æ5 1Æ9 1Æ8 1Æ9 2Æ1 2Æ3

Central California

njt 16 19 35 5 25 17

Ljt 2967 1523 3056 1608 2385 2894

sjt 1Æ9 2Æ1 2Æ2 3Æ3 2Æ3 2Æ4

Southern California

njt 5 4 16 1 9 15

Ljt 4040 2627 3994 2455 2837 3037

sjt 1Æ5 1Æ3 1Æ6 29Æ5 1Æ6 3Æ0
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previous analyses (Barlow & Forney 2007; Barlow 2010). For each j,t

group, the estimate f̂jtð0Þwas calculated as the mean of all f̂ið0Þwithin
stratum j and time t.

Group size. For mean group size sjt, Barlow & Forney (2007) used

means of the raw group size data in each j,t group as point esti-

mates. If detection distance increases with group size, this can poten-

tially bias detectability estimates (Buckland et al. 2001), but we

assumed this not to be problematic for fin whales within the 4-km

truncation distance, given their conspicuous detection cues (e.g.

large size and blows) and occurrence almost always in very small

groups (86% of groups contained 1–3 animals). Zerbini et al. (2006)

also found empirically that fin whale group size did not affect detec-

tion distance. Even so, while raw data means may provide good esti-

mates of sjt for j,t with reasonably large sample sizes, many of the j,t

have relatively few observations (e.g. <5 or 10, Table 1); sample

means in these cases may not always be good estimates of sjt. Better

and more precise estimates can be obtained treating observed group

sizes (s.obsi) as random variables and estimating statistical distribu-

tion parameters. We assumed a generalized Poisson distribution

(Famoye 1993) for group size, with expected values modelled as a

function of covariates. Like our population density models, the most

general group size models considered strata effects and both expo-

nential and decelerating growth trends. To be clear, we actually

modelled ‘s.obsi)1’ because all observed group sizes are positive

integers. Thus,

ðs:obsi � 1Þ � genPoisðkjt; atÞ;

Where at is a time-dependent randomdispersion parameter (normally

distributed with mean a and variance r2
a) that implies overdispersion

when>0. For exponential growth, the full model is:

kjt ¼ exp bs0 þ bskðstratakÞ þ bs4;jtþ djt
� �

;

bs4;j � NormðbS4; rS4Þ;

djt � Normalð0; rsÞ;

where s denotes a group size parameter; S denotes a group size hyper-

parameter; bs0 is an intercept; bsk for k = 1, 2, 3, are fixed effect coef-

ficients for binary stratum variables SC, CC and NC, respectively;

bs4,j are random trend coefficients from a normal hyper-distribution

with mean bS4 and variance r2
S4;and djt are random effects with mean

zero and variance r2
s to describe process variance. For decelerating

growth, themodel is:

kjt ¼ exp bs0 þ bskðstratakÞ þ bs4;j logðtÞ þ djt
� �

:

The expected value for group size for each j,t (i.e. sjt) is kjt þ 1, and

the variance for the generalized Poisson is ðkjtÞ � ½1þ atðkjtÞ�2.
Reduced models (e.g. intercept only, shared intercepts and shared

slopes) were also evaluated.

Parameter estimation

Parameter estimation was conducted using a Bayesian MCMC

approach in WinBUGS 1.4.3 (Lunn et al. 2000; Spiegelhalter et al.

2007). See Appendices S1 and S2 (Supporting Information) for Win-

BUGS code and likelihood expressions. Vague priors were used on

all parameters except for c, for which the prior distribution was infor-

mative [b (157, 13Æ5)], corresponding to empirical estimates of

mean = 0Æ92 with standard error = 0Æ02 (Barlow & Forney 2007).

Normal priors with mean = 0 and large variance (e.g. 10 000) were

used for intercept and slope coefficients (e.g. bs). Uniform (0,100) dis-

tributions were used for a and standard deviations of random effects

(rD4; rd; rS4; rs; rr). For each model, MCMC runs consisted of two

chains with a burn-in of 10 000 samples, and a posterior distribution

based on 30 000 samples for each chain (60 000 samples total); this

was generally sufficient to achieve low Monte Carlo errors (<5% of

MCMC sample standard deviation) for key parameters.

Model selection and model averaging

There is no consensus on how to address Bayesian model uncertainty

or conduct multi-model inference (see overview by Link & Barker

2010). We used Deviance Information Criteria (DIC), which allows

for selection of Bayesian hierarchical models (Spiegelhalter et al.

2002). DIC is defined as �Dþ pD ¼ D̂þ 2pD, where �D is the posterior

mean model deviance, D̂ is the model deviance for the posterior

parameter means, and pD (interpreted as the effective number of

parameters) is �D)D̂. DIC can be problematic in certain situations

(Spiegelhalter et al. 2007), but it is easily calculated fromMCMCout-

put (and is available as a standard output in WinBUGS), and it

remains the standard tool for hierarchical model selection as

evidenced by its widespread use and coverage by recent reviews and

textbooks (e.g. Cressie et al. 2009; Congdon 2010; Link & Barker

2010). The number of possible joint models (i.e. combinations of den-

sity, detection and group size model components) was too large to

practically evaluate in entirety, so we took a modular approach to

model selection. We first conducted model selection separately for

detectability (distance data) and group size components of the model

(i.e. treated them as separate models). Detectability and group size

submodels with DDIC (difference in DIC between that of model k

and the lowest DIC) <4 were subsequently considered in joint mod-

els of detectability, group size and density. For joint models in which

both group size and density were modelled as time dependent, the

time parameter in each component was specified with the same gen-

eral form (e.g. random time effect, exponential trend or decelerating

trend). Process error terms (cjt and djt) were not included during

model selection, because most models fit the data equally well when

process error terms were included, such that important predictor vari-

ables could not be properly identified (i.e. unexplained variance in the

absence of useful predictors is just incorporated in the process error

terms). Final joint models with DDIC < 2 were deemed strong can-

didates for a ‘best’ model (Burnham & Anderson 2002; Spiegelhalter

et al. 2002). We conducted Bayesian model averaging of these top

models to make inference about trends and estimate abundance in

survey years in the face of model uncertainty. For derived model

parameters (e.g. abundance), we generated model-averaged posterior

distributions by sampling parameter estimates from the posterior dis-

tributions of different models in proportion to their relative DIC

weights, defined for model k as:

wk ¼
expð�Dk=2ÞPM

m¼1 expð�Dm=2Þ
;

whereDk refers toDDIC for model k, andDm are theDDIC values for

all candidate models. These weights are considered analogues to AIC

model weights (Burnham & Anderson 2002), and although not theo-

retically justified, this approach has been applied in previous analyses

and shown to be useful for prediction (e.g. Brooks, in Spiegelhalter

et al. 2002;Wilberg&Bence 2008; Jiao, Reid& Smith 2009).
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Prediction

We used model-averaged posterior distributions to predict fin whale

abundance estimates out to 2016. Beyond this time horizon (8 years

from most recent survey, 2008), MMPA policy considers abundance

estimates too out of date to be used for management decision-making

in terms of setting allowable mortality limits for marine mammals

(NMFS 2005). Within this time frame, allowable mortality estimates

may benefit from abundance projections (especially as a precaution-

ary measure for declining populations), rather than remaining fixed

according to the most recent estimates. Process model parameters,

bd’s and rd, were drawn 100 000 times with replacement from the

joint model-averaged posterior distributions. Fin whale abundance in

each j at all future t (2009 through 2016) was calculated for each

MCMC sample from the deterministic parameter estimates (bd’s) plus
a unique process error term for each j,t that was randomly drawn

from a normal distribution with mean 0 and variance r2
d. This gener-

ated distributions for predicted Djt which were multiplied by Aj to

estimate Njt and summed across strata to estimate Nt. Estimates

reflected both parameter estimation uncertainty and process variance.

To demonstrate the usefulness of this, we also compared these to pro-

jected estimates that ignore process error.

Results

MODEL SELECTION

Therewere four detectability submodels and 13 group size sub-

models with enough support to be considered for inclusion in

the set of joint detectability, group size, and density models

(Tables 2 and 3). Based on DIC, the top nine group size sub-

models included a time-dependent rather than constant overdi-

spersion parameter (i.e. at vs. a); we took this as sufficient

evidence to conclude that group size overdispersion should be

modelled as a time-dependent parameter.

Model selection results for joint models are summarized in

Table 4. All candidate models (DDIC £ 4) included parame-

ters strata · Tpow or strata · T for the density component,

providing strong evidence that fin whale density and abun-

dance has increased with time and that rates of increase have

varied by stratum. The most competitive models (DDIC £ 2)

suggested that increases have slowed through time. All but one

candidate model suggested that variation in detectability was

best described by the binary rainFog variable + random year

effects. The best descriptors of group size variation were less

certain (top joint models included intercept only, Tpow, and

strata · Tpow models for group size), but in general, temporal

trendmodels received themost support.

The relative importance of various predictors of detectabil-

ity and group size differed in the joint models from stand-alone

detection and group size submodels (compare Tables 2 and 3

with Table 4). For example, the most supported submodel of

detectability included ship, and the rainFog-only model was

more strongly supported than the rainFog + year model. In

contrast, rainFog + year was the most strongly supported of

the joint models, and none of the candidate joint models

included ship, suggesting that probable ship effects (Zerbini

et al. 2006; Barlow & Forney 2007) were subsumed by year

terms. For group size, some of the candidate submodels

included random year effects (t), which did not appear in any

of the candidate joint models, and T models (vs. Tpow) gener-

ally received more support in the stand-alone group size mod-

els than in the joint models. These differences are attributable

to the influence of the count data model component on esti-

mating parameters that also occur in detectability or group size

model components. A model that most parsimoniously

Table 2. Model selection results for detectability models fit to pooled

distance data from fin whales, blue whales and killer whales. Model

variables included (rainFog and ship are fixed effects; year t is a

random effect). �D and D̂ are mean model deviance and model

deviance at the parameter means, respectively. pD is the effective

number of parameters. Models with DDIC < 4 (in bold) were

considered for inclusion in combined models of detectability, group

size and density (Table 4)

Model �D D̂ pD DIC DDIC

RainFog 1322Æ3 1320Æ3 2Æ0 1324Æ2 1Æ1
RainFog + ship 1319Æ4 1315Æ8 3Æ7 1323Æ1 0Æ0
RainFog + t 1321Æ1 1316Æ6 4Æ5 1325Æ5 2Æ4
RainFog + strata 1323Æ5 1318Æ8 4Æ8 1328Æ3 5Æ2
RainFog + ship + strata 1318Æ5 1312Æ4 6Æ1 1324Æ6 1Æ5
RainFog + t + strata 1321Æ8 1315Æ1 6Æ7 1328Æ5 5Æ4

DIC, Deviance Information Criteria.

Table 3. Model selection results for fin whale group size. Models are

divided into those with constant (a) and time-dependent (at)
overdispersion. Model variables include strata (categorical, fixed

effect), t (categorical, random year effect), T (exponential time trend)

and Tpow (asymptotic time trend). Models denoted ‘strata · T’ and

‘strata · Tpow’ imply a separate trend (treated as a random effect) for

each stratum. �D and D̂ are mean model deviance and model deviance

at the parameter means, respectively. pD is the effective number of

parameters. Models in bold font have DDIC < 4, but only the at
models were considered for inclusion in combined models of

detectability, group size and density (Table 4)

Model �D D̂ pD DIC DDIC

Constant a models

Intercept only 774Æ9 772Æ9 2Æ0 776Æ8 7Æ1
Strata 772Æ9 767Æ8 5Æ0 777Æ9 8Æ2
t 771Æ2 766Æ0 5Æ2 776Æ4 6Æ7
T 772Æ3 769Æ2 3Æ1 775Æ3 5Æ6
Tpow 772Æ2 769Æ2 2Æ9 775Æ1 5Æ4
Strata + t 765Æ2 756Æ3 8Æ9 774Æ1 4Æ4
Strata + T 766Æ6 760Æ7 5Æ9 772Æ5 2Æ8
Strata + Tpow 767Æ1 761Æ2 5Æ9 773Æ0 3Æ3
Strata · T 764Æ3 755Æ8 8Æ5 772Æ9 3Æ2
Strata · Tpow 763Æ8 755Æ2 8Æ6 772Æ4 2Æ7

Time-dependent at models

Intercept only 764Æ8 758Æ1 6Æ8 771Æ6 1Æ9
Strata 765Æ9 756Æ2 9Æ7 775Æ6 5Æ9
t 762Æ3 752Æ5 9Æ7 772Æ0 2Æ3
T 761Æ9 754Æ2 7Æ7 769Æ7 0Æ0
Tpow 762Æ3 754Æ6 7Æ7 770Æ0 0Æ3
Strata + t 758Æ2 744Æ4 13Æ8 772Æ0 2Æ3
Strata + T 759Æ9 748Æ9 11Æ0 771Æ0 1Æ3
Strata + Tpow 760Æ9 750Æ1 10Æ8 771Æ8 2Æ1
Strata · T 757Æ9 744Æ7 13Æ2 771Æ1 1Æ4
Strata · Tpow 758Æ1 745Æ2 12Æ9 771Æ0 1Æ3
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describes all data will be favoured over one that, say, provides

the best fit to distance data but a poor fit to count data.

MODEL-AVERAGED PARAMETER ESTIMATES,

ABUNDANCE AND TRENDS

Deviance Information Criteria-weighted posterior distribution

summaries for density and detectability parameters are in

Appendix S3 (Supporting Information). The posterior mean

estimate of the derived parameter fjt(0) varied from 0Æ34 to 0Æ49
across year and rainFog conditions (Fig. 2), andmean effective

strip width (1 ⁄ fjt(0)) varied from 2Æ2 to 2Æ9 km; these values are

similar to those previously reported for fin whales (Barlow &

Forney 2007; Barlow 2010). We did not summarize model-

averaged group size parameters, because different models con-

tained different parameters. However, the top two jointmodels

(Table 4) provide support for time-dependent variation in fin

whale group size, with trend coefficients in these individual

models both suggesting an increase through time (see Appen-

dix S4, Supporting Information for posterior summaries of

individual model parameters). Model-averaged mean group

size estimates (derived parameters) across the j,t ranged from

1Æ6 to 5Æ9 (mean = 2Æ3). Themaximum of these was for the SC

stratum in 2001, when only a single group of 29Æ5 whales (mean

of multiple observers’ estimates) was recorded. The modelled

vs. observed estimate of group size in this case illustrates the

Table 4. Model selection results for combined models of fin whale detectability (f), group size (s) and density (D). Models with DDIC £ 4 are

shown. Models in bold font (DDIC £ 2) were used in model averaging. Model variables for f and s are as in Tables 2 and 3. All models here

assume time-dependent overdispersion for group size data and simple Poisson variation for count data. Density model variables include strata

(categorical, fixed effect), T (exponential time trend) and Tpow (decelerating time trend). Models denoted ‘strata · T’ and ‘strata · Tpow’ imply a

separate trend (random effect) for each stratum.Dev andDêv aremeanmodel deviance andmodel deviance at the parameter means, respectively.

pD is the effective number of parameters. wk are DIC model weights, scaled to sum to 1 across models here (weights in parentheses are scaled to

sum to 1 acrossmodels withDDIC £ 2)

Model Dev Dêv pD DIC DDIC wk

f(rainfog) s(Tpow) D(strata · Tpow) 2230Æ1 2212Æ2 17Æ9 2247Æ9 3Æ6 0Æ05
f(rainfog + t) s(.) D(strata · T) 2227Æ7 2207Æ2 20Æ5 2248Æ2 3Æ9 0Æ04
f(rainfog + t) s(T) D(strata · T) 2225Æ1 2203Æ3 21Æ8 2246Æ9 2Æ6 0Æ08
f(rainfog + t) s(strata + T) D(strata · T) 2222Æ0 2197Æ5 24Æ5 2246Æ6 2Æ3 0Æ09
f(rainfog + t) s(strata · T) D(strata · T) 2222Æ4 2193Æ6 26Æ8 2247Æ2 2Æ9 0Æ07
f(rainfog + t) s(.) D(strata · Tpow) 2225Æ1 2204Æ5 20Æ6 2245Æ7 1Æ4 0Æ14 (0Æ25)
f(rainfog + t) s(Tpow) D(strata · Tpow) 2222Æ7 2201Æ0 21Æ7 2244Æ3 0Æ0 0Æ29 (0Æ49)
f(rainfog + t) s(strata + Tpow) D(strata · Tpow) 2221Æ9 2197Æ2 24Æ6 2246Æ5 2Æ2 0Æ10
f(rainfog + t) s(strata · Tpow) D(strata · Tpow) 2219Æ0 2192Æ4 26Æ6 2245Æ6 1Æ3 0Æ15 (0Æ26)
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Fig. 2. Histograms of detection distances (truncated at 4 km) by year, and mean f̂ðyÞ by year and rainFog condition, for pooled observations of

finwhales, blue whales and killer whales (sample size = 507). Grey f̂ðyÞ lines represent rainy or foggy conditions (binary rainFog variable = 1).
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usefulness of the hierarchical shrinkage estimators. The strong

relation between fitted and observed values, and the absence of

temporal pattern in the group size residual plots (Fig. 3, left),

suggests a reasonable fit of the model to the data. However,

there was a tendency to overestimate group size slightly, partic-

ularly for the smallest groups, largely due to the influence of

the extreme observation (29Æ5). Mean relative bias

[(observed)fitted) ⁄fitted] in group size across all j,twas+10%

(i.e. group size underestimated) but was )8Æ5% (overesti-

mated) excluding the extreme observation.

The model-averaged posterior distributions for density

trend parameters provide strong evidence of an overall

increase in abundance throughout the study area since the

early-mid 1990s. Posterior estimates of total abundance

across California strata increased by a median of 124% (90%

credible interval: 40–265%) between 1991 and 1996 (Fig. 4).

Across all strata, median increase in total abundance was

51% (90% CRI: 4–113%) between 1996 and 2008, with med-

ian annual growth rate (kt = Nt + 1 ⁄Nt) estimates calculated

from trend coefficients declining from k1996 = 1Æ071 (90%

CRI: 1Æ028–1Æ112) to k2007 = 1Æ035 (90% CRI: 1Æ017–1Æ055)
(Fig. 5). On a stratum-specific basis, mean population density

and abundance has consistently been greatest but not neces-

sarily increasing in the CC stratum, with mean population

increases through time having been driven by increases in

other strata (Fig. 6). Under the MMPA, the 20th percentile

estimate of abundance is used for estimating management

thresholds for incidental take by fisheries (NMFS 2005); these

abundance estimates are included in Appendix S5 (Support-

ing Information). Plots of fitted vs. observed fin whale

counts, and associated residual plots (Fig. 3, right), suggest

that count data were well described by this model, with no

residual overdispersion.

PREDICTED FUTURE ABUNDANCE

Assuming no change in the underlying population dynamics

process, fin whale abundance in the study area beyond 2008 is

expected to continue increasing at a mean rate of about 3%

per year on average, although year-to-year abundance should

rise and fall according to random process variation. Ignoring

process variance, uncertainty in future abundances beyond

2008 simply depends on uncertainty in the 2008 abundance

estimate and in the trend estimates because of sampling error;

this is depicted by the solid prediction lines in Fig. 7. Account-

ing for process variance, uncertainty in future abundance

Southern CA
Central CA
Northern CA
Oregon-Washington

Fig. 3. Residuals (observed)fitted values; on y-axis) for mean group size (left panels) and counts of fin whale groups (right panels). Group size

data are represented on log scale because of an outlier. Points are coded by stratum. Diagonal lines in top panels represent 1 : 1 relationship.
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estimates is greater (see dotted lines in Fig. 7), although there

is still high probability that the overall mean trend through

time will be positive. In this analysis, 20th percentile estimates

of future abundance are almost identical whether or not pro-

cess variation is considered in the prediction model, although

the same is not true for posterior median estimates or 90%

credible intervals.

Discussion

Estimating population abundance trends is central to ques-

tions in ecology, conservation and management, yet only very

recently have methods been developed for estimating both

trends and abundance estimates directly within a single frame-

All strata
California strata only

Fig. 4. Fin whale abundance and trend estimates during survey years

(medians with 90% Bayesian credible intervals). California strata

(Southern, Central and Northern) were surveyed in all years. All

strata (California plus Oregon-Washington) were surveyed from

1996 onward. Fitted trend estimates are for all strata.

Fig. 5. Posteriormean and 90% credible interval estimates for annual

population increase (Nt + 1 ⁄Nt) of fin whales in the California Cur-

rent through time, calculated from trend coefficient estimates. Top

panel shows estimates from t = 1991 though 2007. For larger scale,

the bottom panel shows the same estimates from 1996 through 2007,

the periodwhen survey data came from all strata.

Southern CA
Central CA
Northern CA
Oregon-Washington

Fig. 6. Posterior mean fin whale density and density trend estimates

(per 100 km2) by survey year and stratum.

−− −− Median and 90% CRI estimates
20th percentile

No process variance
Trend (median and 90% CRI)
20th percentile

With process variance
Trend (median and 90% CRI)
20th percentile

Fig. 7. Bayesian posterior estimates of fin whale abundance for the

entire study area during 1996–2008 surveys and projected 8 years

beyond 2008, based on fitted trendmodel.
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work and explicitly from the imperfect observation process

(e.g. Kéry et al. 2009; Kéry & Royle 2010). To our knowledge,

no such method has yet been demonstrated using data

collected from distance sampling methods, apart from the sim-

pler case of comparing two abundance estimates (e.g. Buck-

land et al. 2001; Gerrodette et al. 2011) or conducting post

hoc trend fitting to individual distance-based abundance esti-

mates (Thomas, Burnham & Buckland 2004). The approach

we used fits within a general hierarchical model framework

(sensu Royle & Dorazio 2008; Kéry & Royle 2010) and would

thus easily accommodate other specifications of the state or

observation process, with particularly straightforward exten-

sion to point (as opposed to line-transect) distance sampling.

Compared to a post hoc approach, the hierarchical method is

more efficient for the researcher (many abundance analyses

are replaced by a single analysis), more flexible (e.g. allows for

random effects), useful for prediction (because process error is

estimated explicitly) and yields improved parameter estimates.

For example, CVs in our total abundance estimates were 0Æ15
and 0Æ18 in 2005 and 2008, compared with 0Æ25 and 0Æ26,
respectively, reported by Barlow (2010), who used the same

data set to estimate abundance separately in both years.

Improved parameter estimates are attributable in part to the

use of shared information and hierarchical shrinkage estima-

tors to estimate not just detectability but also other parameters

such as group size and process variance terms, all of which

affect abundance estimates. Abundance estimates are also

made more precise by formulating the problem as a trend

model (effectively, fewer parameters are estimated) with a joint

posterior distribution in which multiple data sets (in our case

counts, group sizes and detection distances) all influence the

estimates of parameters shared across individual likelihood

functions. Goodman (2004) similarly described the benefits of

joint likelihoods for estimating population parameters. Thus,

parameter estimates that reduce overall model deviance are

considered the most probable, irrespective of their influence on

deviance of particular model components. This may help

reduce model uncertainty via buffering model selection from

the effects of random sampling error.

Of course, these improved estimates also depend on the

validity of an increased set of assumptions in the hierarchical

trendmodel that are not imposedwhen abundance is estimated

separately each year and when bootstrapping is used to esti-

mate variances. Such assumptions include the functional form

of the trend model and distributional assumptions about the

count process (e.g. Poisson, generalized Poisson, negative

binomial) and random effects (e.g. normal, log-normal).More-

over, while the Bayesian method implicitly deals with corre-

lated sampling error, it does not account for correlated process

error typical of time-series data (i.e. temporal autocorrelation).

We could not estimate this potential error source because of

the relatively sparse data set (data from only 6 years), but we

would expect little residual correlation because of the time

elapsed between data points (several years) and because our

count data come from a spatially open system such that succes-

sive abundance estimates reflect movement in and out of the

study area as well as in situ dynamics.

Fin whale populations worldwide were depleted by com-

mercial whaling in the 20th century (NMFS 2006). Our

model estimates suggest that fin whale abundance has stea-

dily increased off the west coast of the lower continental

United States since at least as early as 1991, although given

the decelerating increase and point estimates suggesting pos-

sible lower abundance in 2008 than 2005, more data will be

needed to discern whether the increasing trend will con-

tinue. Model projections into the future suggest high proba-

bility of a continuing increase (Fig. 7), but this of course

depends on the factors responsible for past trends remaining

unchanged over the next decade. As this model is empirical

rather than mechanistic, those factors are unknown to the

present analysis.

The rapid abundance increases in the study area during the

early 1990s (i.e. the difference in 1991 and 1993 mean abun-

dance estimates corresponds to an average of 32% increase

per year) are not explainable by in situ population growth

alone, given maximum annual growth rates likely for large

cetaceans (Wade 1998; Zerbini et al. 2006). Rather, dispersal

of new animals into the study area is likely to have occurred

during this time period. The only other published study of fin

whale trends in the North Pacific showed strong evidence of

population growth at 4Æ8% per year (95% CI = 4Æ1–5Æ4%)

for 2001–2003 (Zerbini et al. 2006), which is very similar to the

trend-fit estimates of annual growth in our system during these

years (i.e. k2001 = 1Æ048, k2002 = 1Æ045; Fig. 5). Little is cur-

rently known about fin whale population structure in the

North Pacific, but our study area is near the southern limit of

the summer and autumn distribution of the species as a whole

(Mizroch et al. 2009). A large-scale northward shift in the dis-

tribution of blue whales B. musculus was seen in the North

Pacific, possibly associated with an oceanographic regime

change at the end of the 1990s (Calambokidis et al. 2009), and

similar distribution changes may occur for fin whales. Fin

whale increases in the early 1990s appeared to occur in all

study strata, with highest densities and possibly the fastest

increases occurring in the CC stratum (Fig. 6); this area sup-

ported high fin whale catches in the 20th century so may be a

historically important area for fin whales (Mizroch et al.

2009). Since the mid 1990s, fin whale densities have fluctuated

without obvious trends in waters off CC, while increases have

occurred in other strata, especially off NC, perhaps signalling

that fin whale densities in CC are reaching historical levels or

at least current ecosystem limits.
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